UNIVERSITY CEU SAN PABLO SCHOOL OF PHARMACY DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY

PROBLEMS OF PHYSICAL CHEMISTRY

2018-2019

LESSON 3

- 5. Calculate the change in pressure required to reduce the normal freezing temperature by 1 degree for:
 a) water
 b) a solvent A
 Data: R = 0.082 l·atm·K⁻¹·mol⁻¹ = 1.987 cal·K⁻¹·mol⁻¹ = 8.314 J·K⁻¹·mol⁻¹ ΔH
 _{m,A} = 97.7 J·mol⁻¹; ΔH
 {m,H2O} = 79.7 cal·g⁻¹; T^o{m,A} = 156 K; M_A = 74.12 g·mol⁻¹; ρ (H₂O₍₁₎) =0.9998 g·ml⁻¹; ρ (H₂O_(s)) = 0.9168 g·ml⁻¹; ρ (A₍₁₎) =0.715 g·ml⁻¹; ρ (A_(s)) = 0.820 g·ml⁻¹
- 6. The vapour pressures of solid and liquid HCN can be expressed by the following equations:

Solid: $Log_{10}P(mmHg) = 9.339 - \frac{1865}{T}(K)$

Liquid : $Log_{10}P(mmHg) = 7.745 - \frac{1453}{T}(K)$

Determine:

a) the normal boiling point and the triple point

b) the sublimation, vaporization and melting heat of HCN

- **Data:** $R = 0.082 \text{ l} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 1.987 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$
- 7. Two liquids A and B form ideal solutions in equilibrium with vapour with ideal gas behaviour. At a certain temperature, P_A^* and P_B^* are 0.5 and 1 atm, respectively. Draw a diagram P vs. x, and represent the total vapour pressure and the partial vapour pressure of A and B as a function of X_B.
- **8.** Use the following diagram to determine the masses of water and nicotine present in each phase, when 30 g of nicotine and 10 g of water are mixed at 80°C and 1 atm. How would

the masses of water and nicotine change if temperature is raised to 140 $^{\circ}$ C? And if pressure is changed?

Data: M (C₁₀H₁₄N₂) = 162 g·mol⁻¹; M (H₂O) = 18 g·mol⁻¹

- **9.-** According to the following phase diagram, obtained for naphthalene and p-nitrotoluene, indicate:
 - a) The melting temperature of the two pure solids.
 - b) What represent the AB and BC curves and the B point?
 - c) What is the temperature when naphthalene starts to freeze in the cooling process of a mixture with $x_{p-nitrotoluene} = 0.20$?
 - **d**) If the same solution is cooled to 40 °C, what phases are present? What are their compositions? What is the relative amount?

